Polymer Bulletin 19, 269-274 (1988)

Polymer Bulletin

© Springer-Verlag 1988

Spectroscopic characterization of 1,5-diphenyl-3,7-dihydroxy-1,5-diazacyclooctane – (8C ring compound) formed in N,N-diglycidylanaline/aniline curing systems

D. Reyx¹, B. Costes², L. Matějka^{3*}, and K. Dušek³

¹Laboratoire de Chimie Organique Macromoléculaire, UA CNRS 509, Université du Maine, Route de Laval, F-72000 Le Mans, France

²Aerospatiale Laboratoire Central, DCQ/L Chimie, 12, rue Pasteur,

F-92152 Surresnes Cédex, France

³Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, CS-16206 Prague 6, Czechoslovakia

Summary

A NMR and infrared analysis of the cyclic product formed by the reaction of N,N-diglycidylaniline with aniline confirms the structure of an eight-membered ring (I). The conformational structure of this compound is discussed.

Introduction

Epoxy resins based on N,N-diglycidylamine derivatives, e.g., tetraglycidyldiaminodiphenylmethane (TGDDM), are used for preparation of high-performance epoxy composites. Polyamines are the usual curing agents. The mechanism of the reaction of N,N-diglycidylamines with amines is complicated by dependent reactivities of glycidyl groups and relatively strong cyclization, not encountered in epoxy systems based on diglycidyl ethers of Bisphenol A (DGEBA) (1-4). Some cyclic compounds were found and isolated in the model system diglycidylaniline-aniline. The main cyclic product was identified (5) as 1,5-diphenyl-3,7-dihydroxy-1,5-diazacyclooctane (I).

Arrias et al. (6) have found that the crystalline product (I) is formed from the d,l-diastereoisomer of the reaction product of N,N-diglycidylaniline and aniline whereas that from the mixture of l,l and d,d diastereoisomers remains in solution.

In this paper a spectroscopic analysis of this cyclic product is performed by means of NMR and FTIR.

Experimental

Synthesis of the cyclic product (I)

A 20% solution of equimolar mixture of DGA and aniline in toluene or xylene was heated to 135°C for nine days. Upon

^{*} To whom offprint requests should be sent

cooling the reaction product crystallized from solution. The product was then filtered off and recrystallized from hot toluene.

Analysis

Purity of the product was 98% according to GPC. Elemental composition found: 72.4% C, 7.4% H, 9.1% N (calculated for (I): 72.48% C, 7.38% H, 9.40% N).

High performance liquid chromatography (HPLC)

HPLC analyses were performed in a Waters liquid chromatograph equipped with a Wisp autoinjection instrument, a system controller solvent delivery system and interfaced with a Hewlett Packard UV diode array detector. Spectrograde CH₃CN and reagent grade H₂O were used. The experimental reversed bonded - phase HPLC conditions were as follows: concentration 2 mg/4 ml CH₃CN, injection volume 10 μ l, mobile phase H₂O/CH₃CN, flow rate 1 ml/min, column 250 mm × 4.6 mm Zorbax C₈ at room temperature; UV detection at 254 nm.

Results and Discussion

Identification of 8C ring (I)

The 50 MHz 13 C NMR spectrum given in Fig.1 shows only six resonances: four in the aromatic region and two signals in the aliphatic region around 60 ppm. 13 C NMR shifts were compared with those available and predicted from literature data and are listed in Table 1. Satisfactory agreement between experimental and calculated values was obtained except for C₁ where the deviation exceeded 2 ppm.

This result definitely supports the existence of structure (I).

Fig. 1 ¹³C NMR spectrum of (I) (50 MHz)

Comparison Between Experimental and Calculated NMR ¹³C Chemical Shifts for (I)

TABLE I

	c ₁	c2	c3	C ₄	c ₅	C ₆
Observed ppm/TMS	147.68	111.1	129.9	116.2	61.5	62.6
Predicted ppm/TMS (7)	150.4	112.1	129.1	115.9	40-60	60-75

Determination of the coupling constants ${}^{2}J$ H_a,H_m, ${}^{3}J$ H_m, H_X, ${}^{3}J$ H_a, H_X in CH₂-CHOH systems from a first order analysis of the 500 MHz ¹H NMR AMX spectrum allows us to suggest a particularly symmetrical conformation for the product in DMSO (Fig. 2, Table 2). Only one coupling constant³J H_m, H_X/³JH_a,H_X could be detected (Table 2), which indicates either a value for the dihedral H_{m,a}-C-C-H_X angle close to 90° according to the KARPLUS theory (7) or the existence of equienergetic forms which leads to the same values of interaction constants.

irradiated spectrum

Fig. 2 500 MHz ¹H NMR spectrum of (I)

TABLE II

500 MHz ^{1}H NMR Chemical Shift Assignments (& ppm/TMS)

	δppm Nbr ¹ Η	Assignment
1 2	3.260- 3.281 8	- quadruplet part of AMX type spectrum
3 4	3.289 3.310	$- \underline{CH_2} - \underline{CH_2}^{-} - \underline{CH_2}^{-3} J H_{x'} H_m^{=} (4) - (3) = 10.2 \text{ Hz}$
5	3.367	- singlet HOH/DMSO
6 7 8	3.667 3.681 3.701	- triplet - <u>CH</u> -OH
9 10	3.853 3.881 8	- doublet - <u>CH₂</u> -CH part of AMX type spectrum
11 12	5.181 5.188 2 2	2 JH _m ,H _a ~(9)-(10) \approx -14,6 Hz - doublet - CH- <u>OH</u> 3 J \approx 3.8 Hz
1.3	6.470	
14	6.484	
15	6.498	
16	6.545	
17	6.562	Aromatic protops
18	7.056	Alonatic protons
20	7.073	
20 21	7.087	

Therefore, delocalization of unpaired electrons on nitrogen may only occur if a partial combination of p/π orbitals of both nitrogen and benzene is allowed; this may arise from an sp^2 hybridization tendency of nitrogen and justifies a co-planar position of nitrogen and benzene likages. The molecule can be schematized as follows:

The FTIR analysis was made by comparing major frequencies of (I) with those occurring in similar methylaniline compounds (8-10)(Fig.4, Table 3). While typical bands could be assigned easily, bands between 1400 and 1000 cm⁻¹ are difficult to assign because of combination bands that could occur in this region.

Fig. 4 FTIR spectrum of (I)

TABLE III

Major Frequencies of (I) in IR Region and Possible Assignments

cm ⁻¹	Assignments
3322	∨OH stretching
3094-3062 3039-3027	\sim CH aromatic stretching
2950-2933 2912-2873	\sim CH + CH ₂ aliphatic stretching
1598-1574 1505-1473	\lor C = C aromatic stretching
1450-1429 1375 1347 1266 1160-1022 1054 996 903-877-857 739	δ CH ₂ aromatic bending deformation \vee aromatic C-N stretching δ OH in plane deformation \vee CH ₂ -N stretching δ CH in plane aromatic deformation \vee C-OH alicyclic stretching δ CH in plane aromatic deformation δ CH ₂ skeleton ring deformation δ CH ² out of plane aromatic deformation

Such ring structures may occur in the products of reaction between tetrafunctional TGDDM and diamines and lower their crosslinking density.

References

- 1. Matějka, L., Dušek, K, Dobáš, I. Polym.Bull. <u>14,</u> 309(1985)
- 2. Dušek, K., Matějka, L., Preprints ACS Div.Polym.Materials Sci.Eng. <u>56</u>,
- 3. Reyx, D., Costes, B., Polym.Commun., in press
- 4. Attias, A.J., Ancelle, J., Bloch, B., Laupretre, F., Polym. Bull. <u>18</u>, 217 (1987)
- 5. Matějka, L., Tkaczyk, M., Pokorný, S., Dušek, K., Polym. Bull. <u>15</u>, 389 (1986)
- 6. Attias A.J., Ancelle, J., Bloch, B., Eur.Symposium on Poly-meric Materials, Chemical Aspects in Processing Operations
- and Use of Polymeric Materials, Lyon 1987, p.CPA 08 7. Wehrli, F.N., Wirthlin, T., in "Interpretation of ¹³C NMR spectra", Heyden, London 1976
- 8. Katrizky, Jones, R.A., J.Chem.Soc. 3674 (1959)
 9 Rao, C.N.R., in "Chemical Application of Infrared Spectroscopy", Academic Press, New York 1963
- 10. Bellamy, L.J., in "The Infrared Spectra of Complex Molecules", J.Wiley, New York 1964

Accepted December 4, 1987 С

274